
COURSE INTRODUCTION

MEMORY SAFETY

Dr. Benjamin Livshits

Key Themes of This Course

 How to think about security

 The Security Mindset - “new” way to think about systems

 Threat models, security goals, assets, risks, adversaries

 Connection between security, technology, politics, ethics, ...

 Technical aspects of security

 Attack techniques

 Defenses

Special Focus on Software Security
3

 (In)security comes about as a result of bugs

 Often – but not always – these are software bugs

 We will focus on the software aspect of security

 Often the term application security or software
security is used to describe some of this

Software Security

 “First things first—make sure you
know how to code, and have
been doing so for years. It is
better to be a developer (and
architect) and then learn about
security than to be a security guy
and try to learn to code”

4

Course Outline
5

 Monday overview of security, memory safety

 Tuesday web application vulnerabilities

 Wednesday static and runtime analysis

 Thursday malware

 Friday privacy

 Saturday exam 11-13

Reading list
6

 25 Years of Vulnerabilities
 A few billion lines of code later
 Is open source security a myth?
 SAGE: Whitebox Fuzzing for Security Testing
 Symbolic Execution for Software Testing
 Browser security: Lessons from Chrome
 Advertising Gets Personal
 Inside the Slammer Worm
 The underground economy: priceless
 Understanding Android Security

What This Course is NOT About

 Not a comprehensive course on computer security
 Computer security is a broad discipline!

 Impossible to cover everything in one quarter

 So be careful in industry or wherever you go!

 Not about all of the latest and greatest attacks
 Follow the news

 Not a course on ethical, legal, or economic issues
 We will touch on ethical issues, but the topic is huge

 Not a course on how to “hack” or “crack” systems or do
computer forensics
 Yes, we will learn about attacks ... but the ultimate goal is to develop an

understanding of attacks so that you can build more secure systems

Security Concepts

1. Authentication

2. Authorization

3. Confidentiality

4. Data / Message Integrity

5. Accountability

6. Availability

7. Non-Repudiation

Authentication

 Identity Verification

 How can Bob be sure that he is
communicating with Alice?

 Three General Ways:
 Something you know (i.e., Passwords)
 Something you have (i.e., Tokens)
 Something you are (i.e., Biometrics)

Something You Know

 Example: Passwords
 Pros:

 Simple to implement
 Simple for users to understand

 Cons:
 Easy to crack (unless users choose strong ones)
 Passwords are reused many times

 One-time Passwords (OTP):
 different password used each time, but it is difficult for

user to remember all of them
 what can be done to deal with password memorization

issues?

http://top.pefri.hr/mreze/login.jpg
http://top.pefri.hr/mreze/login.jpg

Something You Have

 A “secret” is a sequence of bits, 0s and 1s, only
know to the card/token and the system into
which it is inserted
 OTP Cards (e.g. SecurID): generates new password

each time user logs in
 Smart Card: tamper-resistant, stores secret

information, entered into a card-reader
 Token / Key (i.e., iButton)
 ATM Card
 Strength of authentication depends on difficulty of

forging

Or Maybe I Have a Browser Cookie
12

Cookie is part of
subsequent
requests

Biometrics

 Pros: “raises the bar”
 Cons: false

negatives/positives,
social acceptance, key
management
 False positive: authentic

user rejected

 False negative: impostor
accepted

13

Technique Effectiveness Acceptance

Palm Scan 1 6

Iris Scan 2 1

Retinal Scan 3 7

Fingerprint 4 5

Voice Id 5 3

Facial

Recognition

6 4

Signature

Dynamics

7 2

Final Notes

 Two-factor Authentication: Methods can be combined
(i.e. ATM card & PIN)

 Who is authenticating who?
 Person-to-computer?
 Computer-to-computer?

 Three types (e.g. SSL):
 Client Authentication: server verifies client’s id
 Server Authentication: client verifies server’s id
 Mutual Authentication (Client & Server)

 Authenticated user is a “Principal”

Authorization

 Checking whether a user has permission to
conduct some action

 Identity vs. Authority

 Is a “subject” (Alice) allowed to access an “object”
(open a file)?

 Access Control List: mechanism used by many
operating systems to determine whether users
are authorized to conduct different actions

http://images.google.com/imgres?imgurl=school.discovery.com/clipart/images/permission.gif&imgrefurl=http://school.discovery.com/clipart/clip/permission.html&h=450&w=550&prev=/images?q=permission&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8
http://images.google.com/imgres?imgurl=school.discovery.com/clipart/images/permission.gif&imgrefurl=http://school.discovery.com/clipart/clip/permission.html&h=450&w=550&prev=/images?q=permission&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8

Configuring Mailing List Permissions
16

Access Control Lists (ACLs)

 Set of three-tuples
 <User, Resource,

Privilege>

 Specifies which users
are allowed to access
which resources with
which privileges

 Privileges can be
assigned based on
roles (e.g. admin)

User Resource Privilege

Alice /home/Alice/* Read, write,
execute

Bob /home/Bob /* Read, write,
execute

Table 1-1. A Simple ACL

Access Control Models

 ACLs used to implement these models

 Mandatory: computer system decides exactly who has
access to which resources

 Discretionary (e.g. UNIX): users are authorized to
determine which other users can access files or other
resources that they create, use, or own

 Role-Based (Non-Discretionary): user’s access & privileges
determined by role

Confidentiality

 Goal: Keep the contents of communication or data
on storage secret

 Example: Alice and Bob want their communications
to be secret from Eve

 Key – a secret shared between Alice & Bob

 Sometimes accomplished with
 Cryptography, Steganography, Access Controls, Database

Views

Message/Data Integrity

 Data Integrity = No Corruption
 Man in the middle attack: Has Mallory tampered with the

message that Alice sends to Bob?

 Integrity Check: Add redundancy to data/messages

 Techniques:
 Hashing (MD5, SHA-1, …), Checksums (CRC…)
 Message Authentication Codes (MACs)

 Different From Confidentiality:
 A -> B: “The value of x is 1” (not secret)
 A -> M -> B: “The value of x is 10000” (BAD)
 A -> M -> B: “The value of y is 1” (BAD)

Accountability

 Able to determine the attacker or principal

 Logging & Audit Trails

 Requirements:
 Secure Timestamping (OS vs. Network)
 Data integrity in logs & audit trails, must not be able to

change trails, or be able to detect changes to logs
 Otherwise attacker can cover their tracks

Availability

 Uptime, Free Storage
 Ex. dial tone availability, System downtime limit, Web

server response time

 Solutions:
 Add redundancy to remove single point of failure
 Impose “limits” that legitimate users can use

 Goal of DoS (Denial of Service) attacks are to reduce
availability
 Malware used to send excessive traffic to victim site
 Overwhelmed servers can’t process legitimate traffic

Non-Repudiation

 Undeniability of a transaction

 Alice wants to prove to Trent that she did
communicate with Bob

 Generate evidence / receipts (digitally signed
statements)

 Often not implemented in practice, credit-card
companies become de facto third-party verifiers

How Systems Fail

 Systems may fail for many reasons, including

 Reliability or robustness deals with accidental failures

 Security deals with intentional failures created by
intelligent parties

 Security is about computing in the presence of an adversary

 But security, reliability, and usability are all related

 Usability deals with problems arising from operating
mistakes made by users

What Drives the Attackers?

 Adversarial motivations:
 Money, fame, malice,

revenge, curiosity, politics,
terror....

 Fake websites: identity
theft, steal money

 Control victim’s machine:
send spam, capture
passwords

 Industrial espionage and
international politics

 Attack on website,
extort money

 Wreak havoc,
achieve fame and
glory

 Access copy-
protected movies
and videos,
entitlement or
pleasure

Security is a Big Problem

 Security very often on front pages of newspapers

Challenges: What is “Security?”

 What does security mean?
 Often the hardest part of building a secure system is figuring out

what security means

 Questions:
 What are the assets to protect?

 What are the threats to those assets?

 Who are the adversaries, and what are their resources?

 What is the security policy?

 Perfect security does not exist!
 Security is not a binary property

 Security is about risk management

From Policy to Implementation

 After you’ve figured out what security means to your
application, there are still challenges
 Requirements bugs

 Incorrect or problematic goals

 Design bugs
 Poor use of cryptography

 Poor sources of randomness

 ...

 Implementation bugs
 Buffer overflow attacks

 ...

 Is the system usable?

Many Participants Affecting System Security

 Many parties involved

 System developers

 Companies deploying the system

 The end users

 The adversaries (possibly one of the above)

 Different parties have different goals

 System developers and companies may wish to optimize cost

 End users may desire security, privacy, and usability

 True?

 But the relationship between these goals is quite complex (will
customers choose not to buy the product if it is not secure?)

Other (Mutually-Related) Issues

 Do consumers actually care about security?

 Do consumers care about privacy?

 Security is expensive to implement

 Plenty of legacy software

 Easier to write “insecure” code

 Some languages (like C and C++) are unsafe

Approaches to Security

 Prevention

 Stop an attack

 Detection

 Detect an ongoing or past attack

 Response

 Respond to attacks

 The threat of a response may be enough to deter
some attackers

Control Hijacking Attacks

 Take over target machine (e.g. web
server)

 Execute arbitrary code on target
by hijacking application’s control
flow, i.e. what actions it performs

 Ideally, this is something that can be
done remotely

 Basic examples
 Buffer overflow attacks
 Integer overflow attacks
 Format string

vulnerabilities

 More advanced
 Heap-based exploits
 Heap spraying
 ROC – return-oriented

programming
 JIT spraying

Buffer Overruns: 35% of Critical Vulns
33

Vulnerabilities By Year
34

Top 3 Vulnerability Type Over Time
35

Anatomy of a Buffer Overflow

 Buffer: memory used to
store user input, has fixed
maximum size

 Buffer overflow: when user
input exceeds max buffer
size

 Extra input goes into
memory locations

Semantics of the Program vs.
Implementation of the Language

37

 Buggy programs will behave “as expected” most of the time

 Some of the time, they will fail in unexpected ways

 Some other times, when confronted with unexpected
inputs provided by the attacker, they will give the attacker
some unexpected capabilities

 Fundamentally, the semantics of C are very close to its
implementation on modern hardware, which compromises
safety

A Small Example

 Malicious user enters >
1024 chars, but buf can
only store 1024 chars;
extra chars overflow buffer

A More Detailed Example:
Break Password Checking

39

pass[16]
main()

“Normal”
Stack

checkPassword()

Compromised
Stack

pass[16]
openVault()

main()

Return
Addr.

http://www.ucmp.berkeley.edu/people/davidl/labdata/data.html
http://www.ucmp.berkeley.edu/people/davidl/labdata/data.html

checkPassword() Bugs

 Execution stack: maintains current function state and
address of return function

 Stack frame: holds vars and data for function

 Extra user input (> 16 chars) overwrites return
address
 Attack string: 17-20th chars can specify address of

openVault() to bypass check
 Address can be found with source code or binary

Non-Executable Stacks Don’t Solve It All

 Some operating systems (for example Fedora) allow
system administrators to make stacks non-executable

 Attack could overwrite return address to point to newly
injected code

 NX stacks can prevent this, but not the vault example
(jumping to an existing function)

 Return-into-libc attack: jump to library functions
 e.g. /bin/sh or cmd.exe to gain access to a command shell

(shellcode) and complete control

The safe_gets() Function

 Unlike gets(), takes parameter specifying max chars to insert
in buffer

 Use in checkPassword() instead of gets() to eliminate buffer
overflow vulnerability: 5 safe_gets(pass, 16);

More on return-to-libc Exploits
43

/* retlib.c */
/* This program has a buffer overflow vulnerability. */
/* Our task is to exploit this vulnerability */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
unsigned int xormask = 0xBE;
int i, length;
int bof(FILE *badfile)
{

char buffer[12];
/* The following statement has a buffer overflow problem */
length = fread(buffer, sizeof(char), 52, badfile);
/* XOR the buffer with a bit mask */
for (i=0; i<length; i++) {

buffer[i] ˆ= xormask;
}
return 1;

}

int main(int argc, char **argv)
{

FILE *badfile;
badfile = fopen("badfile", "r");
bof(badfile);
printf("Returned Properly\n");
fclose(badfile);
return 1;

}

$ sudo -s
Password (enter your password)

gcc -fno-stack-protector -o
retlib retlib.c

chmod 4755 retlib

exit

Now we have this program that will run as
root on the machine

Getting Root Access

 fread reads an input of
size 52 bytes from a
file called “badfile”
into a buffer of size 12,
causing the overflow.

 The function fread()
does not check
boundaries, so buffer
overflow will occur

 The goal is to spawn a
root shell on the
machine as a result of
changing badfile’s
contents

 Why this obsession
with the shell?

44

Stack Layout

 But of course we need
to figure out the
correct addresses to
put into the file!
 system function in libc

 exit function in libc

 And we need to figure
out how to place a
pointer to /bin/sh
string at the top

45

This is function main’s
stack frame

This is our primary
target – we are after a

call to system!

We want program
to exit

Argument to the call to
system (shell program)

will go here

Address of system Routine
46

Address of exit
47

Address of the /bin/sh
48

#include <stdio.h>
void main(){
char* binsh =

getenv("BINSH");
if(binsh){
printf("%p %s\n",
(unsigned int)
binsh, binsh);

}
}

Putting badfile Together
49

Time to Rejoice
50

See this entry for more details:

http://lasithh.wordpress.com/2013/06/23/h
ow-to-carry-out-a-return-to-libc-attack/

Any Solutions?
51

Safe String Libraries

 Avoid unsafe strcpy(), strcat(),

sprintf(), scanf()

 Use safer versions (with bounds

checking): strncpy(), strncat(),

fgets()

 Microsoft’s StrSafe, Messier and

Viega’s SafeStr do bounds

checks, null termination

 Must pass the right buffer size to

functions!

 C++: STL string class handles

allocation

 Unlike compiled languages

(C/C++), interpreted ones

(Java/C#) enforce type safety, raise

exceptions for buffer overflow

 No such problems in PHP or

Python or JavaScript

 Strings are primitive data types

different from arrays

 Generally avoids buffer overflow

issues

Safe Libraries: Still A Lot of Tricky Code

 The strcopy functions don’t accept
the destination buffer size as an
input. So, the developer doesn’t
have control for validating the size of
destination buffer size. The _countof
macro is used for computing the
number of elements in a statically-
allocated array. It doesn’t work with
pointer type.

 The secured string copy supports in
wcscpy_s(wide-character),
_mbscpy_s(multibyte-character) and
strcpy_s formats. The arguments
and return value of wcscpy_s are
wide character strings and
_mbscpy_s are multibyte character
strings. Otherwise, these three
functions behave identically.

wchar_t safe_copy_str1[]=

L"Hello world";

wchar_t
safe_copy_str2[MAX_CHAR];

wcscpy_s(safe_copy_str2,

_countof(safe_copy_str2),

safe_copy_str1);

printf (

"After copy string =
%S\n\n",

safe_copy_str2);

53

get_s and Error Codes

#define MAX_BUF 10

// include

// do

wchar_t safe_getline[MAX_BUF];

if (gets_s(safe_getline, MAX_BUF)

== NULL)

{

printf("invalid input.\n");

abort();

}

printf("%S\n", safe_getline);

54

Defensive Programming

1. Never Trust Input

2. Prevent Errors

3. Fail Early And Openly

4. Document
Assumptions

5. Prevention Over
Documentation

6. Automate Everything

7. Simplify And Clarify

8. Question Authority

55

From Learn C The Hard Way

SAL: Standard Annotation Language
56

int writeData(__in_bcount(length) const void *buffer,

const int length);

int readData(__out_bcount_part(maxLength, *length)

void *buffer, const int maxLength, int *length);

int getListPointer(__deref_out void **listPtrPtr);

int getInfo(__inout struct thing *thingPtr);

int writeString(__in_z const char *string);

http://blogs.msdn.com/b/michael_howard/
archive/2006/05/19/602077.aspx

This function takes a block of
memory of up to maxLength
bytes and returns the byte

count in length

Additional Approaches

 Rewriting old string manipulation code is expensive
and error-prone other solutions?

 StackGuard/canaries (Crispin Cowan)
 Static checking (e.g. Coverity)
 Non-executable stacks
 Other languages (e.g., Java, C#, Python, JavaScript)

StackGuard

 Canary: random value, unpredictable to attacker

 Compiler technique: inserts canary before return
address on stack

 Corrupt Canary: code halts
program to thwart a
possible attack

 Not comprehensive
protection

Source: C. Cowan et. al., StackGuard,

More on Canaries and Runtime Protection

 General principles

 Early detection

 Runtime can help

 The cost of protection
is quite low

 The implementation
burden is not very
high, either

59

Static Analysis Tools

 Static Analysis: analyzing programs without running
them

 Meta-level compilation
 Find security, synchronization, and memory bugs
 Detect frequent code patterns/idioms and flag code

anomalies that don’t fit

 Ex: Coverity, Fortify, Ounce Labs, Klockwork
 Coverity found bugs in Linux device drivers
 Lots of tools to look for security bugs in Web code

Performance is a Consideration

 Better security comes at a cost, sometimes that cost is
runtime overhead

 Mitigating buffer overflow attacks incurs little
performance cost

 Safe str functions take slightly longer to execute

 StackGuard canary adds small overhead

 Performance hit is negligible while security payoff is
immense

Heap-Based Overflows

 malloc() in C provides a fix chunk of memory on
the heap

 Unless realloc() called, attacker could
 overflow heap buffer (fixed size)

 overwrite adjacent data to modify control path of
program

 Function pointers or vtable-contained pointers are
especially juicy targets

Typical Heap-Stored Targets for Overruns

 Exception handlers:
 (Windows SEH attacks)

 Function pointers:
 (e.g. PHP 4.0.2, MS

MediaPlayer Bitmaps)

 longjmp buffers:
 longjmp(pos)

 (e.g. Perl 5.003)

63

buf

Fnc
Ptr

